接上文我们查看了bind和listen流程,直到了listen操作会在内核初始化一个epoll表,并将listen的描述符加入到epoll表中

如何保证epoll表初始化一次

前文我们看到pollDesc的init函数中调用了runtime的pollOpen函数完成的epoll创建和描述符加入,这里再贴一次代码

func (pd *pollDesc) init(fd *FD) error {
    serverInit.Do(runtime_pollServerInit)
    ctx, errno := runtime_pollOpen(uintptr(fd.Sysfd))
    if errno != 0 {
        if ctx != 0 {
            runtime_pollUnblock(ctx)
            runtime_pollClose(ctx)
        }
        return errnoErr(syscall.Errno(errno))
    }
    pd.runtimeCtx = ctx
    return nil
}

runtime_pollServerInit link的是runtime/netpoll.go中的poll_runtime_pollServerInit函数 由于serverInit是sync.Once类型,所以runtime_pollServerInit只被初始化一次,而epoll模型的初始化就是在该函数完成

func poll_runtime_pollServerInit() {
    netpollGenericInit()
}

func netpollGenericInit() {
    if atomic.Load(&netpollInited) == 0 {
        lock(&netpollInitLock)
        if netpollInited == 0 {
            netpollinit()
            atomic.Store(&netpollInited, 1)
        }
        unlock(&netpollInitLock)
    }
}

netpollinit实现了不同模型的初始化,epoll的实现在runtime/netpoll_epoll.go中

func netpollinit() {
    epfd = epollcreate1(_EPOLL_CLOEXEC)
    if epfd < 0 {
        epfd = epollcreate(1024)
        if epfd < 0 {
            println("runtime: epollcreate failed with", -epfd)
            throw("runtime: netpollinit failed")
        }
        closeonexec(epfd)
    }
    //...
}

可以看到上述代码里实现了epoll模型的初始化,所以对于一个M主线程只会初始化一张epoll表,所有要监听的文件描述符都会放入这个表中。

跟随accept看看goroutine挂起逻辑

当我们调用Listener的Accept时,Listener为接口类型,实际调用的为TCPListener的Accept函数

func (l *TCPListener) Accept() (Conn, error) {
    if !l.ok() {
        return nil, syscall.EINVAL
    }
    c, err := l.accept()
    if err != nil {
        return nil, &OpError{Op: "accept", Net: l.fd.net, Source: nil, Addr: l.fd.laddr, Err: err}
    }
    return c, nil
}

Accept内部调用了accept函数,该函数内部实际调用netFD的accept

func (ln *TCPListener) accept() (*TCPConn, error) {
    fd, err := ln.fd.accept()
    if err != nil {
        return nil, err
    }
    //...
}

在net/fd_unix.go中实现了linux环境下accept的操作

func (fd *netFD) accept() (netfd *netFD, err error) {
    d, rsa, errcall, err := fd.pfd.Accept()
    if err != nil {
        if errcall != "" {
            err = wrapSyscallError(errcall, err)
        }
        return nil, err
    }

    if netfd, err = newFD(d, fd.family, fd.sotype, fd.net); err != nil {
        poll.CloseFunc(d)
        return nil, err
    }
    if err = netfd.init(); err != nil {
        netfd.Close()
        return nil, err
    }
    lsa, _ := syscall.Getsockname(netfd.pfd.Sysfd)
    netfd.setAddr(netfd.addrFunc()(lsa), netfd.addrFunc()(rsa))
    return netfd, nil
}

上述函数内部调用的是net/fd_unix.go内部实现的Accept函数

func (fd *FD) Accept() (int, syscall.Sockaddr, string, error) {
    if err := fd.readLock(); err != nil {
        return -1, nil, "", err
    }
    defer fd.readUnlock()

    if err := fd.pd.prepareRead(fd.isFile); err != nil {
        return -1, nil, "", err
    }
    for {
        s, rsa, errcall, err := accept(fd.Sysfd)
        if err == nil {
            return s, rsa, "", err
        }
        switch err {
        case syscall.EAGAIN:
            if fd.pd.pollable() {
                if err = fd.pd.waitRead(fd.isFile); err == nil {
                    continue
                }
            }
        case syscall.ECONNABORTED:
            // This means that a socket on the listen
            // queue was closed before we Accept()ed it;
            // it's a silly error, so try again.
            continue
        }
        return -1, nil, errcall, err
    }
}

上述函数就是tcp底层的函数了,accept(fd.Sysfd)监听fd.Sysfd描述符,等待可读事件到来,当可读事件到来后,就可以认为来了一个新的连接,从而创建一个新的描述符给新的连接。 当accept出现错误时,需要判断err类型,如果是EAGAIN说明当前没有连接到来,就调用waitRead等待连接,ECONNABORTED说明连接还未accept就断开了,可以忽略。

func (pd *pollDesc) waitRead(isFile bool) error {
    return pd.wait('r', isFile)
}

进而调用pollDesc的wait操作

func (pd *pollDesc) wait(mode int, isFile bool) error {
    if pd.runtimeCtx == 0 {
        return errors.New("waiting for unsupported file type")
    }
    res := runtime_pollWait(pd.runtimeCtx, mode)
    return convertErr(res, isFile)
}

wait函数中判断pd的runtime上下文是否正常,然后调用runtime包的poll_runtime_pollWait实现挂起等待

func poll_runtime_pollWait(pd *pollDesc, mode int) int {
    err := netpollcheckerr(pd, int32(mode))
    if err != 0 {
        return err
    }
    if GOOS == "solaris" || GOOS == "illumos" || GOOS == "aix" {
        netpollarm(pd, mode)
    }
    for !netpollblock(pd, int32(mode), false) {
        err = netpollcheckerr(pd, int32(mode))
        if err != 0 {
            return err
        }
    }
    return 0
}

poll_runtime_pollWait运行在内核M线程中,轮询调用netpollblock,所以内核M线程一直在轮询检测netpollblock返回值,当其返回true时循环就可以退出,从而用户态协程就可以继续运行了。

func netpollblock(pd *pollDesc, mode int32, waitio bool) bool {
    gpp := &pd.rg
    if mode == 'w' {
        gpp = &pd.wg
    }

    // set the gpp semaphore to WAIT
    for {
        old := *gpp
        if old == pdReady {
            *gpp = 0
            return true
        }
        if old != 0 {
            throw("runtime: double wait")
        }
        if atomic.Casuintptr(gpp, 0, pdWait) {
            break
        }
    }
    if waitio || netpollcheckerr(pd, mode) == 0 {
        gopark(netpollblockcommit, unsafe.Pointer(gpp), waitReasonIOWait, traceEvGoBlockNet, 5)
    }
    old := atomic.Xchguintptr(gpp, 0)
    if old > pdWait {
        throw("runtime: corrupted polldesc")
    }
    return old == pdReady
}

netpollblock内部根据读模式还是写模式,获取pollDesc成员变量的读协程或者写协程地址,然后判断其状态是否为pdReady,这里要详细说一下,golang阻塞一个用户态协程是要将其状态设置为0(正在运行)或者pdWait(阻塞),这里为0,所以逻辑继续往下走,之后做了一个原子操作将gpp设置为pdWait状态,接着根据这个状态,执行gopark函数,阻塞住用户态协程。当内核想激活用户协程时gopark会返回,然后该函数判断gpp是否为pdReady,从而激活用户态协程。

func gopark(unlockf func(*g, unsafe.Pointer) bool, lock unsafe.Pointer, reason waitReason, traceEv byte, traceskip int) {
    if reason != waitReasonSleep {
        checkTimeouts() // timeouts may expire while two goroutines keep the scheduler busy
    }
    mp := acquirem()
    gp := mp.curg
    status := readgstatus(gp)
    if status != _Grunning && status != _Gscanrunning {
        throw("gopark: bad g status")
    }
    mp.waitlock = lock
    mp.waitunlockf = unlockf
    gp.waitreason = reason
    mp.waittraceev = traceEv
    mp.waittraceskip = traceskip
    releasem(mp)
    // can't do anything that might move the G between Ms here.
    mcall(park_m)
}

gopark将用户态协程放在等待队列中,然后调用mcall触发汇编代码。之后会检测调用unlockf函数,如果unlockf返回false则说明可以解锁用户态协程了。另外官网的注释说unlockf不要访问用户态协程的stack,因为G's stack可能会在gopark和unlockf之间被移除。到目前为止,我们理解了用户态协程挂起原理。

epoll就绪后如何激活用户态协程

想知道如果激活挂起的用户态协程,就要先看看epoll_wait判断就绪事件后怎么处理的。runtime/netpoll_epoll.go中实现了epollwait逻辑

func netpoll(delay int64) gList {
    if epfd == -1 {
        return gList{}
    }
    //...
    var events [128]epollevent
retry:
    n := epollwait(epfd, &events[0], int32(len(events)), waitms)
    if n < 0 {
        if n != -_EINTR {
            println("runtime: epollwait on fd", epfd, "failed with", -n)
            throw("runtime: netpoll failed")
        }
        // If a timed sleep was interrupted, just return to
        // recalculate how long we should sleep now.
        if waitms > 0 {
            return gList{}
        }
        goto retry
    }
    var toRun gList
    for i := int32(0); i < n; i++ {
        ev := &events[i]
        if ev.events == 0 {
            continue
        }
        //...
        var mode int32
        if ev.events&(_EPOLLIN|_EPOLLRDHUP|_EPOLLHUP|_EPOLLERR) != 0 {
            mode += 'r'
        }
        if ev.events&(_EPOLLOUT|_EPOLLHUP|_EPOLLERR) != 0 {
            mode += 'w'
        }
        if mode != 0 {
            pd := *(**pollDesc)(unsafe.Pointer(&ev.data))
            pd.everr = false
            if ev.events == _EPOLLERR {
                pd.everr = true
            }
            netpollready(&toRun, pd, mode)
        }
    }
    return toRun
}

可以看出netpoll函数调用epollwait返回就绪事件列表,然后遍历就绪的事件列表,从事件类型中取出pollDesc数据,调用netpollready将曾经挂起的协程放入gList中,然后返回该列表

func netpollready(toRun *gList, pd *pollDesc, mode int32) {
    var rg, wg *g
    if mode == 'r' || mode == 'r'+'w' {
        rg = netpollunblock(pd, 'r', true)
    }
    if mode == 'w' || mode == 'r'+'w' {
        wg = netpollunblock(pd, 'w', true)
    }
    if rg != nil {
        toRun.push(rg)
    }
    if wg != nil {
        toRun.push(wg)
    }
}

netpollready调用了unblock函数,并且将协程写入glist中

func netpollunblock(pd *pollDesc, mode int32, ioready bool) *g {
    gpp := &pd.rg
    if mode == 'w' {
        gpp = &pd.wg
    }

    for {
        old := *gpp
        if old == pdReady {
            return nil
        }
        if old == 0 && !ioready {
            // Only set READY for ioready. runtime_pollWait
            // will check for timeout/cancel before waiting.
            return nil
        }
        var new uintptr
        if ioready {
            new = pdReady
        }
        if atomic.Casuintptr(gpp, old, new) {
            if old == pdReady || old == pdWait {
                old = 0
            }
            return (*g)(unsafe.Pointer(old))
        }
    }
}

netpollunblock函数修改pd所在协程的状态为0,表示可运行状态,所以netpoll函数内部做了这样几件事,根据就绪事件列表找到对应的协程,将挂起的协程状态设置为0表示可运行,然后将该协程放入glist中。在runtime/proc.go中findrunnable会判断是否初始化epoll,如果初始化了则调用netpoll,从而获取glist,然后traceGoUnpark激活挂起的协程

func findrunnable() (gp *g, inheritTime bool) {
    _g_ := getg()
    //...
    if netpollinited() && atomic.Load(&netpollWaiters) > 0 && atomic.Load64(&sched.lastpoll) != 0 {
        if list := netpoll(0); !list.empty() { // non-blocking
            gp := list.pop()
            injectglist(&list)
            casgstatus(gp, _Gwaiting, _Grunnable)
            if trace.enabled {
                traceGoUnpark(gp, 0)
            }
            return gp, false
        }
    }
    //...
}

以上就是golang网络调度和协程控制的原理,golang通过epoll和用户态协程调度结合的方式,实现了高并发的网络处理,这种思路是值得日后我们设计产品借鉴的。 感谢关注我的公众号 wxgzh.jpg

results matching ""

    No results matching ""